Nordic Systems Engineering Tour 2019 18/09/2019 Oslo

S2ML+X in Pedagogical Action

Prof. Antoine B. Rauzy

Department of Mechanical and Industrial Engineering Norwegian University of Science and Technology Trondheim, Norway

&

Chair Blériot-Fabre

CentraleSupélec Paris, France

Teaching Model-Based Systems Engineering

Targeted audience:

• Students in engineering studies, master degree (mechanical engineering, reliability engineering...)

Targeted systems:

• Engineered technical systems (cars, trains, power plants, engines...)

"A combination of interacting elements that are organized so to achieve one or several established objectives" (INCOSE)

Course:

- 1 semester, ~30 hours of course + ~20 hours of tutorial
- 20-50 students

Toward a general theory of models in systems engineering

Objectives (examples)

System Architecture

What the system should do?

What the system should be?

Reliability Engineering

What can go wrong? What is the severity of consequences? What is the likelihood?

NTNU Norwegian University of Science and Technology

Which Models?

Models are working tools, not (platonic) ideals the system should comply to.

NTNU Norwegian University of Science and Technology

Virtual experiments

What is a Model?

Models (textual or graphical) are eventually **sequences of symbols**.

To deserve the status of model, such a sequence of symbols must:

Have a well-defined syntax

There should be a grammar, i.e. a set of rules, that makes it possible to verify mechanically which sequences of symbols are models and which are not.

Have a well-defined semantics

There should be an **interpretation**, i.e. a set of rules, that associates without **ambiguity** to each model a **mathematic** object belonging to a certain algebra (collection objects + set of operators operating on these objects)

More of less standardized notations are not models... which does mean that they are not useful to support the communication among stakeholders.

Pragmatics

In addition to their syntax and their semantics, models have a **pragmatics**, i.e. relation to the system they represent.

Pragmatics is a subfield of linguistics and semiotics that studies the ways in which **context** contributes to **meaning**.

Pragmatic versus Formal Models

NTNU Norwegian University of Science and Technology

The S2ML+X Paradigm

Constituents of Models

Behaviors + Structures = Models*

Meaning and practical consequences:

- Any modeling language is the combination of a mathematical framework to describe the behavior of the system under study and a structuring paradigm to organize the model.
- The choice of the appropriate mathematical framework for a model depends on which aspect of the system we want to study
- Structuring paradigms are to a very large extent independent of the chosen mathematical framework. They can be studied on their own.

(*) In reference to Wirth's seminal book "Algorithms + Data Structures = Programs"

Systems Structure Modeling Language (S2ML)

A structuring paradigm that unifies object- and prototype-orientation and an ontology of behavioral modeling languages

Modeling Approaches

- Top-down model design
- System level
- Reuse of modeling patterns
- Prototype-Orientation

system

architecture

- Bottom-up model design
- Component level
- Reuse of modeling components
- Object-Orientation

Multiphysics simulation

Models as Scripts

The model "as designed" is a script to build the model "as assessed".

```
domain WF {WORKING, FAILED} WORKING<FAILED;
operator Series arg1 arg2 =
  (if (and (eq state1 WORKING) (eq state2 WORKING))
        WORKING
        FAILED);
class Component
        WF state(init = WORKING);
        WF in, out(reset = WORKING)
        probability state FAILED = (exponentialDistribution lambda (missionTime));
        parameter Real lambda = 1.0e-3;
        assertion
        out := (Series in state);
end
```

Complex models can be built using **libraries** of **reusable modeling components** and **modeling patterns**.

The S2ML+X Paradigm

Versatile set of domain specific modeling languages

Domain	Language	
System architecture (structural diagrams)	S2ML	
Combinatorial Optimization	S2ML + constraints	
Reliability Engineering	S2ML + stochastic Boolean formulas	
Logistics	S2ML + hierarchical graphs	
Stochastic processes	S2ML + Markov chains	
Model-checking	S2ML + finite state automata	
Discrete event systems	S2ML + guarded transition systems (AltaRica)	
Business processes	S2ML + process algebra (Scola)	

S2ML Toolbox (Proof of Concept)

NTNU Norwegian University of Science and Technology

Organization of the course

lecture	Observe	 Description of a use case Informal analysis of the use case
	Formalize	 Presentation of a modeling framework (S2ML+) Study of the use case in this modeling framework
orial	Model	 Modeling of similar use cases in the framework
tuto	Experiment	 Virtual experiments Report on the result of the virtual experiments

Example of Exercise

Two water towers supply three cities through a network of pipes and pumping stations. The capacity of pipes is limited.

- 1. Design a S2ML+NET model for this system
- Use the Ford-Fulkerson algorithm to verify that the demands cities can be satisfied

Computational Uncertainties

The **computational complexity** of virtual experiments **overdetermines** the modeling process: models result always of a **tradeoff** between **accuracy of the description** and **ability to perform calculations** within the available computational resources

Classes of Modeling Languages

The example of reliability engineering:

Combinatorial Formalisms

- Fault Trees
- Event Trees
- Reliability Block Diagrams
- Finite Degradation Structures

States Automata

- Markov chains
- Dynamic Fault Trees
- Stochastic Petri Nets

• ...

Universal Languages

- Agent-based models
- Process algebras
- Python/Java/C++

• ...

Expressive power				
States	States + transitions	Deformable systems		
	Complexity of assessments			
#P-hard but reasonable polynomial approximation	PSPACE-hard	Undecidable		

Difficulty to design, to validate and to maintain models

Experience Feedback

Challenges and Assets

Challenges:

- Software development and maintenance
- Low level in computer science/discrete mathematics/software engineering/programming of students
- Lack of suitable exercises
- Unconventional of teaching/evaluating the course

Assets:

- General theory of behavioral models (systems engineering)
- S2ML Toolbox
- Dozens of exercises ready
- Book in preparation
- Positive feedbacks from students

Concluding Remark

The theory and the technology are (almost) ready for a full-scale deployment of model-based systems engineering, but... are we?

Additional Material

AltaRica 3.0 (S2ML + Guarded Transition Systems)

Guarded Transitions Systems:

- Are a probabilistic Discrete Events System formalism.
- Are a compositional formalism.
- Generalize existing mathematical framework.
- Take the best advantage of existing assessment algorithms.

Scola (S2ML + Process Algebra)

Scenario-oriented modeling methodology

- Architecture description
- Dynamic modification of components
- Moving components
- Dynamic creation/deletion of components

Model Synchronization

Abstraction + Comparison = Synchronization

How to agree on disagreements?

NTNU Norwegian University of Science and Technology

SmartSync Platform

